
piQSL

Draft Technical Specification

piQSL

piQSL (noun)

Pronounced: pixel

1. A novel digital radio mode designed to gamify amateur radio

communication by transmitting visually engaging pixel art in place

of traditional QSL card exchanges.

2. Transmissions begin with a header containing the sender's and

recipient's callsigns, followed by a 32x32 pixel art image. The

mode emphasizes creativity, collectability, and the spirit of

radio communication.



Introduction

piQSL is a digital radio mode that is being developed to encode,

transmit, and decode 32x32 grid image and meta data over,

predominantly, HF bands. In truth, the design is band and modulation

agnostic and can theoretically be transmitted over any voice mode.

However, with the narrowband transmission, it is best suited for HF

bands where there is often good support on most radios for narrowing

the bandwidth, and of course, it is the home of DX'ing.

The motivation to create this mode is really down to a personal

frustration with amateur radio. I have an affinity with radio, I think

it's in my blood; my Grandfather, also an engineer, received an MBE

for rebuilding an Enigma relay transmitter in the Netherlands during

WW2 by stripping electrical components and rebuilding the transmitter

after bombing. Crazy. This story has always resonated with me and made

radio seem somewhat whimsical. However, I'm not much of a talker, and

there is only so much listening you can do, and other digital modes

haven't really excited me. SO, I have found myself with a license, and

never using it.

piQSL aims to bring a new type entertainment and excitement into radio

with a specific focus on collecting digital 32 x 32 QSL type cards

through your contacts directly. Gamifying the process making contacts,

and bringing motivation to myself to participate actively in digital

modes where I can start making contacts without talking, or getting

bored!

This document provides an in-depth technical overview of the encoding,

modulation, and decoding methodologies that will be used in the piQSL

digital radio mode.



Digital Modulation

Modulation

Modulation is obviously one of the most important aspects of a radio

mode. MFSK (Multi-Frequency Shifted Keys) had already been decided on,

for it's ease of encoding and it's a proven method, but the final

specification is dependent on testing and having the freedom to tune

the modulation quickly and easily to find the most effective

combination.

In order to process the data that we want to be able to transmit, a

non-standard MFSK modulation is required. Having researched and tested

the hardware limitations, and tested multiple options regarding

bandwidth, tone duration, tone frequencies etc the following

modulation scheme has been decided upon for testing; a final

specification will be confirmed after testing is completed:

Frequency Range and Bandwidth

In order to fine tune the modulation specification, the modulation can

be tuned rapidly for testing purposes with variable within tuning.js :

Minimum Tone Frequency ( MIN_TONE_FREQ ):

This is the lowest frequency used for transmitting data tones.

Bandwidth ( BANDWIDTH ):

The total frequency range for data transmission.

Reserved Calibration Bandwidth:

A portion of the bandwidth is reserved for calibration tones at

both ends of the frequency range.

const reservedCalibrationBandwidth = BANDWIDTH / 7; 

Available Bandwidth for Data:

The usable bandwidth for data tones is the total bandwidth minus

the reserved calibration bandwidth.



Tone Mapping

For simplicity and transmission robustness, the stepSize  (the frequency

gap between tones) is fixed across the tone maps, based on the largest

tone map in the schema.

Step Size Calculation

Character Frequency Map

Character Frequency Map( CHAR_FREQ_MAP )

const availableBandwidth = BANDWIDTH - reservedCalibrationBandwidth;

Step Size ( stepSize ):

The frequency difference between adjacent tones is calculated

based on the available bandwidth and the number of tones needed.

const stepSize = availableBandwidth / 39; 

Why 39?

38 characters (26 letters A-Z, 10 digits 0-9, hyphen '-',

and space ' ')

Plus one special End-of-Line (EOL) tone

Characters Mapped:

'A' to 'Z', '0' to '9', '-', and ' ' (space)

Frequency Assignment:

Each character is assigned a unique frequency starting from the

minimum tone frequency, incremented by the step size.

for (let i = 0; i < characters.length; i++) {
    charFrequencyMap[characters[i]] = Math.round(MIN_TONE_FREQ + (i * stepSize));
}

End-of-Line (EOL) Tone:

A special tone used to signify the end of a line or data block.



Color Tone Maps

Calibration Tones

Transmission Details

Transmission is via audio. Support should be available for CAT, but

piQSL will be able to function perfectly well by direct connection to

audio feeds; line-in or mic for receiving, and line-out or phones for

transmission; just remember to PTT!

Tone Duration

charFrequencyMap['EOL'] = Math.round(MIN_TONE_FREQ + (characters.length * stepSize));

32-Color Tone Map ( _32C_TONE_MAP ):

Used for image data where each of 32 colors is mapped to a unique

frequency.

for (let i = 0; i < 32; i++) {
    tone32CMap.push(Math.round(MIN_TONE_FREQ + (i * stepSize)));
}

4-Tone Map ( _4T_TONE_MAP ):

Used for a reduced color mode or specific data types, selecting

every 8th tone from the 32-tone map.

for (let i = 0; i < 4; i++) {
    tone4TMap.push(Math.round(tone32CMap[i * 8]));
}

Calibration Tones:

Special tones at the minimum and maximum frequencies reserved for

synchronization and calibration purposes.

const CALIBRATION_TONE_MIN = toneMaps.MIN_TONE_FREQ; 
const CALIBRATION_TONE_MAX = toneMaps.MAX_TONE_FREQ; 



'*' Technically limited to a minimum of approximately 30ms,

practically limited to a minimum of about 50ms

Transmission Sequence

Standard Tone Duration ( TONE_DURATION ): in milliseconds* per tone

Header Tone Duration ( HEADER_TONE_DURATION ): in milliseconds* per tone

for header data

Calibration Tone Duration : Fixed to 500ms for each tone.

1. Calibration Tones:

Transmission starts with calibration tones at the minimum and

maximum frequencies to help the receiver calibrate frequency drift

and synchronisation.

await changeTone(CALIBRATION_TONE_MIN, 500);
await changeTone(CALIBRATION_TONE_MAX, 500);

2. Header Transmission:

The header contains metadata; sender callsign, recipient callsign,

or CQ, and mode (e.g., '4T' or '32C'). Each character in the

header is transmitted using its corresponding frequency from the

CHAR_FREQ_MAP . The header is limited to 15 characters, and buffered

to 15 if the transmitted data is less than 15. This can be

expanded upon in later variants.

const headerString = `${senderCallsign}-${recipientCallsign}-${mode}`.padEnd(15, ' 
');

3. Data Transmission:

Image Data:

Image pixels are mapped to color indices, which are then mapped

to frequencies using either the _32C_TONE_MAP  or _4T_TONE_MAP ,

depending on the mode.

Tone Sequence:

Tones are transmitted sequentially, with calibration tones

inserted between them for synchronisation of decoding.

for (let i = 0; i < tones.length; i++) {
    // Insert calibration tone between characters
    await changeTone(CALIBRATION_TONE_MIN, TONE_DURATION);



Smooth Transitions

Demodulation Details

FFT Analysis

    // Transmit data tone
    await changeTone(tones[i], TONE_DURATION);
}

4. End-of-Line Tone:

An EOL  tone is transmitted to signify the end of a line or data

block.

await changeTone(END_OF_LINE, TONE_DURATION * 2);

Frequency Transitions:

The modulation uses smooth transitions between tones to reduce

abrupt frequency changes, which can help minimise spectral

splatter and improve signal quality; hard frequency transitions

can cause many audio glitches, especially on lower quality

devices.

if (USE_SMOOTH_TRANSITIONS) {
    oscillator.frequency.linearRampToValueAtTime(frequency, 
txAudioContext.currentTime + 0.02);
} else {
    oscillator.frequency.setValueAtTime(frequency, txAudioContext.currentTime);
}

FFT Size ( FFT_SIZE ): 2048

Determines the frequency resolution of the Fast Fourier Transform

(FFT) used in the receiver.

Time and Frequency Resolution:

Larger FFT sizes provide better frequency resolution but require

longer time durations per tone (further details on this in the

Interpolation Methods section).



Demodulation Parameters

Synchronization

Demodulation is quite robust to synchronisation drift, due to the two-

tone calibration transmission, the demodulation functions are

triggered by the demodulation of the second calibration tone, which

Goertzel and Hamming Window:

Hamming Window will prepare our signal for analysis by smoothing

the edges, reducing artefacts and marginally improving on the

frequency resolution. Then Goertzel will determine which

frequencies from the modulation scheme are most powerful in the

sample.

Amplitude Threshold ( RX_AMPLITUDE_THRESHOLD ): -50 dB (default)

Signals below this amplitude are ignored to reduce noise. This is

currently coded in the tuning.js  file, however, it will be

adjustable in the UI using the waterfall to visually hide the

noise floor.

Analysis Interval ( RX_ANALYSIS_INTERVAL ): in milliseconds

Determines how often the receiver samples the incoming signal. The

sampling rate can overlap the time resolution allowing for

multiple samples to be taken over various point within a single

time resolution, there is a hard limit on this figure based on the

processor speed of the computer being used - this will be the

limiting factor in low specification SBC's i.e. Raspberry Pi;

lower 10ms is unlikely on RPi - tone duration will ensure that low

low specification devices are able to demodulate effectively.

Required Samples per Tone ( RX_REQUIRED_SAMPLES_PER_TONE ): 5

The number of consecutive samples required to confirm the

detection of a tone.

Calibration Drift ( RX_CALIBRATION_DRIFT ):

Allows for frequency drift in calibration tones due to clock

inaccuracies or Doppler shifts.

const RX_CALIBRATION_DRIFT = BANDWIDTH / 7; // Approximately 142.86 Hz



can be received any time from the 6th second, up to the 15th second of

the scheduled period.

Transmission Scheduling

Countdown Logic

Summary of Scheme

Processing Interval ( PROCESSING_INTERVAL ):

Transmissions are scheduled to start on the 7th second of every x

minutes, where x is determined by the below calculation of the

transmission duration;

const PROCESSING_INTERVAL = Math.ceil(((TONE_DURATION * 2 * 1024) + 
(HEADER_TONE_DURATION * 2 * 15) + 15000) / (1000 * 60));

Start Time ( RX_startTime ):

Receiver starts listening at a specific time offset after the

minute mark (e.g., +6 seconds).

End Time ( RX_endTime ):

Receiver times out if no calibration tone is detected by a certain

time (e.g., +15 seconds).

The application calculates the time until the next synchronised

transmission interval and schedules the transmission accordingly.

function scheduleTransmission(gridData, senderCallsign, recipientCallsign, mode) {
    // Calculate next transmission time
    const nextInterval = new Date(epoch.getTime() + Math.ceil(timeSinceEpoch / 
intervalMs) * intervalMs);
    nextInterval.setUTCSeconds(7); // Set seconds to +7 as required
    // Schedule transmission
}

Modulation Scheme: Multi-Frequency Shift Keying (MFSK)

Data Encoding: Each symbol (character or colour) is mapped to a

unique frequency within the specified bandwidth.



Considerations

Calibration: Special tones at reserved frequencies help

synchronise the transmitter and receiver, accounting for any

frequency drift.

Transmission Flow:

1. Send calibration tones.

2. Transmit header data encoded as frequencies.

3. Transmit image or text data encoded as frequencies.

4. Use EOL tones and calibration tones for synchronisation between

data blocks.

Reception Flow:

1. Listen for calibration tones to calibrate frequency offsets and

trigger data demodulation.

2. Use Goertzel and Hamming Wave to detect frequencies in the

incoming signal.

3. Map detected frequencies back to symbols based on the tone

maps.

4. Render the Header to the UI.

5. Sequentially decode the Image data to the UI.

Synchronization: Transmissions are scheduled at precise intervals

to ensure that receivers are listening at the correct times,

however drift is supported by robust demodulation.

Frequency Resolution vs. Time Resolution:

There's a trade-off between frequency resolution and time

resolution in FFT analysis. Higher FFT_SIZE  improves frequency

resolution but requires longer tones.

Signal Quality:

Using smooth transitions between frequencies and appropriate

amplitude thresholds helps maintain signal integrity and reduces

noise. It does however increase the error count between

transitions and shortens the window of a tone.

Clock Synchronisation:

Both transmitter and receiver should have their clocks

synchronised to the same time reference to ensure accurate timing,

certainly to within a few seconds of each other.



Environmental Factors:

Factors like Doppler shifts, hardware inaccuracies, and noise can

affect the transmission and reception of tones. Calibration tones

and drift allowances help mitigate these issues.



Calculation Methods

Summary

piQSL will use Goertzel and Hamming Window calculations for effective

frequency demodulation, due to it's speed and low computational

requirements compared with the alternatives. While FFT and

Interpolation does allow for larger frequency shifts, as it collects

data from all frequency bins, the effect this has on performance is

not an acceptable trade off.

Details of the options I looked into are below.

FFT Size

1 What is FFT Size?

Good Question, before starting this, I knew little about it myself!

FFT size is the number of samples that are processed at one time by

the Fast Fourier Transform (FFT) algorithm. The FFT is a mathematical

method used to transform a live signal into snapshots of data; like

sheet music. This allows us to see the different frequencies (like

musical notes) that make up the original signal. When is comes to

understanding the resolution, speed and accuracy etc we can think of

the FFT size a bit like the number of pieces in a puzzle, where each

piece is called a bin:

2 Why do we need to know this?

For us to effectively develop the modulation, encoding and decoding of

piQSL, we need to understand how all this affects the ability to

process the signal on:

Small Puzzle (Small FFT Size): Fewer pieces mean each piece is

larger. The puzzle is quicker to assemble, quicker to find the

pieces, less processing power is required i.e can be done by a

child) but the picture is less detailed.

Large Puzzle (Large FFT Size): More pieces mean each piece is

smaller. It takes longer to assemble, its takes longer to find the

pieces, is harder to do, but the picture is more detailed.



Interpolation Methods (Option 1)

The Basics

What is interpolation?

Interpolation is a mathematical method used to estimate unknown values

that fall between known data points. In simple terms, it's a way of

"filling in the gaps" in data to make a smoother or more detailed

representation. For us what this means, is that we can use smaller FFT

sizes, resulting in a faster time resolution, but lower frequency

resolution, then use interpolation to fill in the gaps that are

missing to estimate where a frequency might lie between two FFT bins:

Showing a frequency between bins, with interpolation

Methodology

Table Showing Frequency Resolutions with Different
Interpolation Methods

Bandwidth requirements

Frequency steps to keep stones clearly separated

Minimum tone duration required to ensure signal processing is

possible



FFT 
Size

Time 
Resolution 
(ms)

Frequency 
Resolution 
(Hz)

With Parabolic 
Interpolation 
(Hz)

With Quadratic 
Interpolation 
(Hz)

32 0.73 1378.13 689.06 344.53

64 1.45 689.06 344.53 172.27

128 2.90 344.53 172.27 86.13

256 5.80 172.27 86.13 43.07

512 11.61 86.13 43.07 21.53

1024 23.22 43.07 21.53 10.77

2048 46.44 21.53 10.77 5.38

4096 92.88 10.77 5.38 2.69

8192 185.76 5.38 2.69 1.34

16384 371.52 2.69 1.34 0.67

32768 743.04 1.35 0.67 0.34

Note: The "Hz" columns represent the approximate smallest frequency

difference that can be resolved using each method.

Understanding the Calculations

1. Time Resolution

The time resolution (Δt) is the duration of the FFT window, for us,

the longer this window is the longer the tone duration of the

transmission must be. This is because for each time we trigger this

the analysis of an FFT window we are trying to return a single tone

i.e. the frequency with the highest amplitude for the FFT period:

Δt = N
fs

Example for N = 256:

Δt = 256
44100 ≈ 0.00580 seconds ≈ 5.80 ms

(N) is the FFT size.

(fs) is the sampling rate (e.g., 44.1 kHz).



2. Frequency Resolution

The frequency resolution (Δf) is the width of each frequency bin, this

is the width of each bin that we are analysing per FFT window, the

lower the resolution the faster we can iterate of the total number of

bin per FFT window. Another speed vs. accuracy fight:

Δf = fs
N

Example for N = 256:

Δf = 44100
256 ≈ 172.27 Hz

Here, our example shows that for an FFT window size of 256, we can

analyse in in 5.8ms (from the time resolution), however, only to an

accuracy of 172.72 Hz, this is because we've

3. Effective Frequency Resolution Without
Interpolation

Without any interpolation, the smallest frequency difference we can

detect is equal to the frequency resolution (Δf).

4. Parabolic and Quadratic Interpolation

Interpolation techniques improve frequency estimation by fitting a

curve to the magnitude spectrum around the peak bin.

Improvement Factor: Interpolation methods can improve the effective

frequency resolution by a certain factor. Typically:

Worked Examples

Parabolic Interpolation: Assumes the peak and its immediate

neighbors form a parabola.

Quadratic Interpolation: A more general form that may include

additional calculations for a better fit.

Parabolic Interpolation: Improves resolution by a factor of ~2.

Quadratic Interpolation: Improves resolution by a factor of ~4.



Example Using N (FFT Size) = 256

Implementation of Interpolation Methods

All modulation tuning is controlled within the root folder file

tuning.js  there are two constants, which can be changed to switch on or

off the interpolation methods used when receiving a signal which is

used for testing:

All the receiving decoding in managed inside src/receive.js  and

interpolation is completed as follows:

1. Without Interpolation

Frequency Resolution (Δf): 172.27 Hz

Effective Frequency Resolution: 172.27 Hz

2. With Parabolic Interpolation

Effective Frequency Resolution:

Effective Δf =
Δf
2

=
172.27
2

≈ 86.13 Hz

3. With Quadratic Interpolation

Effective Frequency Resolution:

Effective Δf =
Δf
4

=
172.27
4

≈ 43.07 Hz

const USE_QUADRATIC_INTERPOLATION = true; // more accurate
const USE_PARABOLIC_INTERPOLATION = false; // faster

if (peakIndex !== -1 && maxAmplitude >= RX_AMPLITUDE_THRESHOLD) {

        let peakFrequency;

        if (USE_QUADRATIC_INTERPOLATION) {

            // Quadratic interpolation over bins
            let mag0 = RX_dataArray[peakIndex - 1] || RX_dataArray[peakIndex];
            let mag1 = RX_dataArray[peakIndex];
            let mag2 = RX_dataArray[peakIndex + 1] || RX_dataArray[peakIndex];
            mag0 = Math.pow(10, mag0 / 20);
            mag1 = Math.pow(10, mag1 / 20);



Goertzel and Hamming Window (Option 2)

The Basics

Using a combination of the Hamming Window and the Goertzel Algorithm,

offers a faster and more tuned extraction of the received tones, where

FFT analyses the whole spectrum.

1. Hamming Window applyHammingWondow

The Hamming window is a type of window function used in digital signal

processing to reduce spectral leakage when analyzing signals. When

applying the Fast Fourier Transform (FFT) or similar techniques, the

input signal is often truncated to a finite length. This truncation

can introduce discontinuities, causing unwanted artifacts (spectral

leakage) in the frequency domain.

By applying the Hamming window, we taper the signal to reduce these

discontinuities, resulting in more accurate frequency analysis.

Mathematical Definition

The Hamming window is defined as:

Hamming Window Formula

            mag2 = Math.pow(10, mag2 / 20);
            const numerator = mag0 - mag2;
            const denominator = 2 * (mag0 - 2 * mag1 + mag2);
            const delta = denominator !== 0 ? numerator / denominator : 0;
            const interpolatedIndex = peakIndex + delta;
            peakFrequency = interpolatedIndex * binWidth;

        } else {
            // No interpolation, use the peak index directly
            peakFrequency = peakIndex * binWidth;
        }
        RX_detectTone(peakFrequency, maxAmplitude);

    }



Where:

This creates a symmetric curve that peaks at the centre of the window.

How It Works

The input signal x[n] is multiplied element-wise by the window function

w[n]:

xwindowed[n] = x[n] ⋅ w[n]

This operation smooths the edges of the signal, tapering it toward

zero at the boundaries.

Advantages

Practical Example

Let’s assume a signal x[n] of length N = 8:

x[n] = [1, 0.5, 0.2, 0.1,−0.1,−0.2,−0.5,−1]

The corresponding Hamming window values are:

w[n] = [0.08, 0.31, 0.77, 1.0, 1.0, 0.77, 0.31, 0.08]

Applying the window:

xwindowed[n] = [1 ⋅ 0.08, 0.5 ⋅ 0.31,… ,−1 ⋅ 0.08]

w[n]: The window value at index n.

N: The total number of samples.

n: The current sample index (from 0 to N − 1N − 1N − 1).

Reduces Spectral Leakage: The Hamming window ensures the

transition at the edges of the signal is smooth.

Improves Frequency Resolution: Frequency components become more

distinguishable in the analysis.



xwindowed[n] = [0.08, 0.155, 0.154, 0.1,−0.1,−0.154,−0.155,−0.08]

This results in a signal smoothed at the edges, ready for spectral

analysis.

Implementation

2. Goertzel Algorithm ( goertzel)

Purpose

The Goertzel algorithm is a computationally efficient method for

determining the power of specific frequency components in a signal.

Unlike the FFT, which computes all frequency components, Goertzel

focuses on individual frequencies. As we have a known set of frequency

tones, this makes it an ideal candidate for demodulating piQSL.

Mathematical Definition

The Goertzel algorithm evaluates the Discrete Fourier Transform (DFT)

for a single frequency bin. For a target frequency fk , the DFT

coefficient is calculated as:

Xk =
N−1

∑
n=0

x[n] ⋅ e−j
2πkn
N

Where:

/ Utility: Apply Hamming window to samples

function applyHammingWindow(samples) {

    const N = samples.length;

    return samples.map((sample, n) => sample * (0.54 - 0.46 * Math.cos((2 * Math.PI * n) / 
(N - 1))));

}

Xk: The DFT coefficient for frequency bin k.



LUCKILY JAVASCRIPT WILL DO THIS ALL FOR ME...I'm not even going to

break this down, it's horrible, and honestly, I had to use AI create a

function in JS that worked correctly as I had spent too long tyring to

get it working.

Advantages

Implementation

x[n]: The input signal at index n.

N: The total number of samples.

e−j
2πkn
N : The complex exponential term representing the frequency

component.

Efficiency: Computes only specific frequencies, reducing

computational load compared to FFT.

Targeted Analysis: Ideal for detecting predefined frequencies,

such as those in your modulation/demodulation process.

// Utility: Goertzel algorithm for frequency detection

function goertzel(samples, sampleRate, targetFreq) {

    const N = samples.length;
    const k = Math.round((N * targetFreq) / sampleRate);
    const omega = (2.0 * Math.PI * k) / N;
    const sine = Math.sin(omega);
    const cosine = Math.cos(omega);
    const coeff = 2.0 * cosine;
    let q0 = 0;
    let q1 = 0;
    let q2 = 0;

    for (let i = 0; i < N; i++) {
        q0 = coeff * q1 - q2 + samples[i];
        q2 = q1;
        q1 = q0;
    }

    const real = q1 - q2 * cosine;
    const imag = q2 * sine;



It looks so simple here.

Testing and Final Decision

I tested both FFT and Interpolation (parabolic and quadratic), then

tested Goertzel. On average Interpolation at FFT size of 2048

performed sample computation at 4-7ms intervals. While Goertzel and

Hamming Window performed at a speed of 0.3 - 1.5ms at FFT size of

8192.

In fact, in all tested metrics, Goertzel and Hamming Window

outperforms FFT and Interpolation:

1. Key Data Points

Method FFT Size Average Computation Time

Interpolation (FFT) 2048 4-7 ms

Goertzel + Hamming 8192 0.3-1.5 ms

2. Speed Performance Statistics

Mean Computation Time

Performance Speedup

The speedup factor is calculated as:

Speedup Factor =
Mean Time (FFT)

Mean Time (Goertzel)

    return Math.sqrt(real * real + imag * imag);
}

Interpolation (FFT):

Average computation time: 4+7
2 = 5.5ms

Goertzel + Hamming:

Average computation time: 0.3+1.5
2 = 0.9ms



Speedup Factor =
5.5
0.9

≈ 6.11

3. Frequency Resolution Differences

Frequency resolution is determined by the FFT size and the sampling

rateIt is calculated as:

Resolution =
Sampling Rate
FFT Size

Assume a typical sampling rate of 44100Hz:

Comparison

Goertzel + Hamming Window is approximately 6.1x faster than

Interpolation with FFT for processing time.

Interpolation (FFT):

Resolution: 44100
2048 ≈ 21.53Hz

Effective Freq: 21.53
4 ≈ 5.38Hz

Goertzel + Hamming:

Resolution: 44100
8192 ≈ 5.38Hz

Goertzel + Hamming Window achieves a similar frequency resolution

compared to Interpolation with FFT.



Error Correction

An important factor in the demodulation is error correction and

mitigation. The easiest method to achieve better accuracy to increase

the bandwidth and the tone lengths. However, this is not practical to

the extent that would be required to ensure acceptable demodulation

success rates. So, a number of error correction and mitigation methods

have been employed.

Frequency Snapping

In order to help account for slight shifts in frequency, errors in FFT

bin calculations and noise, a method for frequency snapping is built

in to the demodulation functions, the snapping threshold is calculated

with the following:

Threshold =
Frequency Step × 0.9

2

Example Calculation:

Given a Frequency Step of 10 Hz:

Threshold =
10 × 0.9

2
=

9
2
= 4.5 Hz

Explanation:

Example Expected Possible Tones: 850 Hz and 860 Hz.

Threshold: 4.5 Hz.

Frequency at 855 Hz:

Distance to 850 Hz: (|855 − 850| = 5 Hz)

Distance to 860 Hz: (|860 − 855| = 5 Hz)

Since 5 Hz > 4.5 Hz (Threshold), 855 Hz is considered an error

frequency and not logged.

Frequency at 856 Hz:

Distance to 860 Hz: (|860 − 856| = 4 Hz)

Since 4 Hz ≤ 4.5 Hz (Threshold), 856 Hz snaps to 860 Hz.

The Threshold determines the maximum allowable deviation from an

expected tone frequency for it to be considered valid.

The threshold, is proportional to the bandwidth and step size,

allowing for simple tuning during development.



Consecutive frequency sequencing and deletion

With this integer we are using it to confirm a tone by ensuring that

the tone is received in that many consecutive samples. In addition to

this, any consecutive tone with an element count of < the

RX_MIN_SAMPLES_PER_TONE  is removed from the array, thus allowing the for a

potentially shorter run of consecutive elements to be become longer.

Then Finally, any consecutive elements of an array that meet the

RX_REQUIRED_SAMPLES_PER_TONE  get added to a new final array of received

tones.

It is a simple yet elegant method of error correction by post-

processing data arrays.

Example:

As you can see from above, while simple, this method has removed

frequency oddities, and can connect strings of consecutive tones that

don't quite meet the threshold to be accepted, lowering the error rate

caused by doppler effect and drift.

Frequencies within the Threshold of an expected tone are "snapped"

to that tone.

Frequencies outside the Threshold are considered errors and are

not logged.

const RX_REQUIRED_SAMPLES_PER_TONE = 6; // how many consecutive samples of a tone required
const RX_MIN_SAMPLES_PER_TONE = 3;

rawArray = [1,1,1,2,2,1,1,1,3,3,3,3,3,3,3,3,1,2,1,1,1,2,2,1,1,1,4,4,4,4,4,4,];

dropMin = [1,1,1,1,1,1,3,3,3,3,3,3,3,3,1,1,1,1,1,1,4,4,4,4,4,4];

withoutCorrection = [3,4]

correctedToneSequence = [1,3,1,4]



RF Modulation

While the piQSL signal generation is modulated and demodulated by

computer and the piQSL software, transmission over the radio is

relatively modulation agnostic, as long as it is a voice mode.

piQSL is predominantly developed for QRP and DX, so naturally it is

more likely to be used over the HF frequency bands where SSB is the

norm for amateur radio use. In line with other digital mode and to

create a default, it is recommended to use USB.



Early Screenshots

Loading Page

Main Window



Callsign cards; 73, CQ, and General QSL



Early Receive Example - missing lines 18 - 19 due to noise


